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Soft modes in electronic stripe phases and their consequences for thermodynamics and transport
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The Goldstone mode due to stripe or unidirectional charge-density-wave order in electron systems is found
to have the same functional form as the one in classical smectic liquid crystals. It is very similar to the
Goldstone mode that results from helical magnetic order. This allows for an effective theory that provides a
quasiparticle description of either stripe phases or helimagnets in the low-energy regime. The most remarkable
observable consequence is an electronic relaxation rate in d=2, that is, 1/7*«7 In T in clean systems and
1/79\Tin weakly disordered ones. The corresponding results in d=3 are 1/ 7 T%? and 1/ 7T, respectively.
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I. INTRODUCTION

Classical liquid crystals display a fascinating variety of
ordered phases."? A fluid of prolate molecules (“directors”)
can enter a nematic phase that breaks rotational invariance
by aligning, on average, the major axes of the molecules
while their center-of-mass motion remains fluidlike. If, in
addition, the molecules arrange in layers that break transla-
tional invariance in one direction, a smectic phase results.
Smectic order is characterized by a vector ¢ whose direction
is normal to the layers and whose modulus g determines the
interlayer distance 27/g. One further distinguishes between
smectic-A phases, where, in the ground state, the major axes
of the directors are aligned perpendicular to the layers, and
smectic-C phases, where they are aligned at an angle. If chi-
ral molecules are added to the fluid, a cholesteric phase can
result where translational invariance is broken by means of a
helical arrangements of the directors. These various instances
of spontaneously broken continuous symmetries result in the
existence of Goldstone modes.>* In the nematic phase the
Goldstone modes correspond to uniform rotations of all mol-
ecules, analogous to the Goldstone modes in a ferromagnet.
In the smectic and cholesteric phases the Goldstone mode
takes the form of a propagating wave with a highly aniso-
tropic frequency wave-vector relation

k| ———F—
QO (k) = M\c,{kﬁ + chi/qz.

1.1

Here k=(k,,k | ) is the wave vector and we have chosen ¢ to
point in the x direction. ¢, and ¢, are elastic constants. The
excitation with frequency () is often referred to as “second
sound.” Ordinary, or first, sound also exists and is slightly
modified by the existence of the smectic or cholesteric order.
The absence of a term proportional to ki under the square
root in Eq. (1.1) is due to rotational invariance, and the func-
tional form of (k) is the same in both smectic and choles-
teric phases.

In recent years, electronic analogs of liquid-crystal-
ordered phases have been discussed in the context of
quantum-Hall systems,>” high-T, superconductors,® and he-
lical magnets.””!' An electronic nematic phase can result
from an attractive electron-electron interaction in the quad-

1098-0121/2009/80(7)/075121(7)

075121-1

PACS number(s): 71.45.Lr, 71.27.+a

rupole or €=2 channel.'? If the interaction amplitude exceeds
a critical strength, a Pomeranchuk instability!? results in a
Fermi surface that, for nearly-free electrons, is an ellipse (in
d=2) or an ellipsoid (in d=3) instead of a circle or a sphere.
With increasing correlation strength, a unidirectional charge-
density wave can form that is the electronic analog of a
smectic phase. Such one-dimensional order is normally un-
stable but it is stabilized by the underlying nematic order.'*
The resulting “stripe phases” are believed to be realized in
quantum-Hall systems and in high-T, superconductors.’> An
electronic analog of cholesteric order is provided by helical
magnets, such as MnSi or FeGe, where the magnetization
orders in a helical pattern.'® The Goldstone mode in the latter
(“helimagnon”) turns out to be very similar to that in either
classical cholesterics or smectics; it is given by Eq. (1.1)
without the |k | |/|k| prefactor.!” This difference is due to dif-
ferences in the kinetic equations that govern the dynamics of
spins and directors, respectively.

In this paper we investigate stripe order, with a focus on
2-d or quasi-2-d systems, although the corresponding 3-d
results can be readily obtained and are also given. We deter-
mine the resulting Goldstone mode and its consequences for
observables. We will focus on systems in a vanishing mag-
netic field; for discussions of soft fluctuations in stripe
phases of quantum-Hall systems, see, Refs. 18-20. We find
that the contribution of the Goldstone mode to the specific
heat is proportional to 7% and thus subleading to the Fermi-
liquid contribution. The single-particle relaxation rate 1/7
averaged over the Fermi surface, however, is found to go as
T In T, which is a much stronger 7 dependence than in a
Fermi liquid. The former result is consistent with the one
obtained before in Ref. 21 but the latter is not. We will ex-
plain the origin of this discrepancy. In addition, our results
are the d=2 analogs of our previous results for
helimagnets.!”-?? Our result for 1/7 implies an inverse ther-
mal conductivity that goes as 7In 7 and we will discuss
consequences for the electrical conductivity.

II. STRIPE ORDER
A. Statics

Let us assume a phase with stripe order, i.e., an electron
density p in the ground state that can be written, in a saddle-
point approximation,?® as
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Psp(X) = po + A cos(g - x). (2.1a)

Here py is the average density and A is the amplitude of the
density wave, which is the order parameter of the smectic
order. x=(x,7) comprises the spatial position x and the
imaginary time 7. The density wave vector ¢ with modulus
g=|q| is determined by the microscopic mechanism that
causes the smectic order, e.g., a density-density correlation
function that has a maximum at ¢ # 0. In general, in an elec-
tronic smectic one expects ¢ to be a sizable fraction of the
Fermi wave number kg.

Fluctuations about the saddle point will include amplitude
fluctuations, which are massive and can be neglected, and
phase fluctuations that will be soft. The fluctuating density
will thus read

p(x) =po+ A cos[q - x +u(x)], (2.1b)

with a phase u(x). The functional form of the static phase-
phase correlation function is determined by rotational sym-
metry and must be the same as in the classical case,>

ST P B—

— 7 - 2.2
Ng cxk)zc + clki/q2 22)

Here k=(k,i{)) comprises the wave vector k and a bosonic
imaginary frequency i{). Since any Gaussian action must be
quadratic in A, the elastic constants will be proportional to
A? and proportional to one another: ¢,%c | «\?/kg. Here \
=I'A, with I' an appropriate density-density interaction
strength, is an energy that is the charge-density analog of the
Stoner gap in ferromagnetism, and the density of states on
the Fermi surface, Ng, serves as a normalization factor.

B. Dynamics

We now use time-dependent Ginzburg-Landau theory
(TDGL) (Ref. 24) to determine the dynamics of the phase
fluctuations. For density fluctuations, the appropriate kinetic
equation is a Langevin equation®

pdpv=-Vp—pv-V)v-elp/m)E +, (2.3a)
augmented by the continuity equation
dp=-V-(pv), (2.3b)
and the Maxwell equations?®
V-E=-2%"7e(- V)G D2(p— p,), (2.3¢)
VXE=0. (2.3d)

Here ¢ denotes real time, p is the mass density, v is the
velocity, m, and e are the electron mass and charge, respec-
tively, E is the electric field, and £ is a Langevin force. The
pressure p can be written as p=(p/V)dF/dp, with V the
system volume and F the free energy. The latter is given by
a Hamiltonian H[u] that generates the static correlation func-
tion given by Eq. (2.2). At this point we need to realize that,
because of the conserved nature of the density, fluctuations
near k=0 are as important as those near k=q. We thus write,
to linear order in the fluctuations,
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p(x) = po+n(x)+ A cos(q - x) —u(x)A sin(q - x),
(2.4a)

and

H[n,ul= (C%/Zpo)f dx[n(x)]? +NFf dx{c,[d.u(x)]?

+ e [V3ubo)Ph, (2.4b)
with ¢, the speed of (first) sound. Equation (2.3) is now fully
specified and we solve them in a zero-loop approximation,
which amounts to neglecting the terms nonlinear in the
velocity.?” Within TDGL, the static fields entering the Hamil-
tonian are replaced by the corresponding dynamic ones after
performing the appropriate functional derivatives.

We now course grain the equations, i.e., we perform a
spatial average over a small volume that contains an integer
number of charge-density-wave periods. This makes the
Langevin force in Eq. (2.3a) drop out and we obtain

2
(.0 = — 2V n(x.1) + L wd(Vule.r) - —E(x.1).
Po q me

(2.5a)

Here we have used the identities

SH fdy[ SH_duly)

dplx) Su(y) dp(x)

with H from Eq. (2.4b) and
on(y)/ dp(x) = dlx - y),

and defined an operator

SH 6n(y)
on(y) dp(x) |’

wy(V) = yl- c,dr + ¢, Vi/g*] (2.5b)

with y,=2Ngq?/ po. For later reference we also define

2
wﬁ(V) = 2"_1#%(— Vv2)3-dr2 _ CSVZ.

(S

(2.5¢)

Course graining the continuity equation and using Eq. (2.4a),
yields

on(x,t)==py V -v(x,1). (2.6a)

Also from the continuity equation, by multiplying by
sin(g-x) and coarse graining, we find

du(x,0)=—q-v(x,1). (2.6b)

Finally, from Egs. (2.3¢) and (2.3d) we obtain, after coarse
graining,

V2E(x,1) = - 24" are(- V2) 3D 2p(x,1). (2.7)
We next derive an equation that couples n and u by taking

the divergence of Eq. (2.5a), and using Egs. (2.3c) and
(2.6a),

075121-2



SOFT MODES IN ELECTRONIC STRIPE PHASES AND...

Fnlx,1) = - 0A(V)n(x,0) %(q V) 2(V)ulx, ).

(2.8a)

A second equation coupling n and u is obtained from Eq.
(2.6b) with the help of Egs. (2.5a) and (2.7), viz.,

PV2u(x,1) = — V2R (V)ulx,1) - piwﬁ(V)z?tn(x,t).
0

(2.8b)
Equation (2.8) constitutes a closed system of partial differ-

ential equations for the two dynamical variables n and u.
With

wg(k) = 'yo[cxki +c, kY iq%] (2.9a)
the Fourier transform of Eq. (2.5b) and
Poff2
o) =2 - [k + oGk (2.9b)
me

the plasma frequency squared, the two resonance frequencies
are

Q2 (k) = w3 (k) + wiy(K)Kky/K?, (2.10a)

Q2 (k) = wo(k)k 1k, (2.10b)

For neutral systems (e=0), w,(k) correctly reduces to the
frequency of (first) sound, cy|k|. Switching back to an imagi-
nary time/frequency representation, the corresponding eigen-
vectors, i.e., the soft modes, are

Po -

k,
w(k) =n(k) + i—qcéwo(k)pu(k), (2.11a)
) = ul) +i-L () (2.11b)
g =Uu + lpokzn . .

The o-o correlation function or smecton susceptibility then
is

_ Yoq* 1
Niki Q2(k) - (iQ)*

These results are exactly analogous to the classical case,>*
see Eq. (1.1), except that the charged nature of the electron
system modifies first sound into a plasma mode. Note the
strongly anisotropic wave-vector dependence of both reso-
nance frequencies and of (), in particular. In a classical con-
text, the two modes are usually referred to as first and second
sound, respectively, for neutral systems, and as plasma oscil-
lations and second sound for charged ones. In a quantum
context, the quanta of first sound and plasma oscillations are
usually referred to as phonons and plasmons, respectively,
and by analogy we call the quanta of second sound “smec-
tons.” The smecton is the Goldstone mode related to the
unidirectional charge-density-wave order. It is precisely
analogous to the corresponding soft modes in both smectic
and cholesteric liquid crystals. By contrast, the helimagnon
(the Goldstone mode in a helical magnet), is nor completely

Xoo(k) (2.12)

PHYSICAL REVIEW B 80, 075121 (2009)

analogous to the classical cholesteric Goldstone mode; it is
missing the factor k2 /k? in the analog of Eq. (2.10b).!7 This
factor is also missing in the phenomenological description of
an electronic smectic in Ref. 21, which did not take into
account the coupling to plasmons.?® While this omission
makes a large difference for the angular dependence of the
resonance frequency, it is of no consequence for the leading
temperature dependencies of various observables that couple
to the smectons. This is because, as we will see, the latter is
determined by a region in wave-vector space where k)c~k2L
~T in a scaling sense?® and in this regime the prefactor is
equal to unity to leading order as T— 0.

III. OBSERVABLE CONSEQUENCES OF THE SMECTONS
A. Specific heat

A result that can be immediately obtained from the reso-
nance frequency alone is the smecton contribution to the
internal energy U and hence to the specific heat C
=dU/VJIT. The former is given by U,=2,Q(k)ng[Q,k)],
with ny the Bose distribution function. The result in 3-d is
C(T—0)*T? and in 2-d we find

C(T— 0)=AcqX(TIT,)*>. (3.1)

Here we have defined a temperature scale 7,,= \5'70)\(,]2/ k% and
A is a number of O(1). This agrees with the result obtained
in Ref. 21. An inspection of the integral shows that the domi-
nant contribution comes from the region in wave-vector
space mentioned at the end of the last section. The resulting
temperature dependence is nonanalytic but subleading com-
pared to the Fermi-liquid contribution Cgp «T.

B. Effective quasiparticle theory

In order to consider the effects of the smectons on other
observables it is useful to derive an effective action for qua-
siparticles in the presence of smectic order, in analogy to the
theory for helical magnets developed in Ref. 30. In the
present case, the effective action takes the form

_ _ 1
Serl ) = Sol i, ] + 51“2 f dxdyn (x) x(x,y)ng(y).
(3.2a)

Here  and ¢ are fermion fields, I is the interaction ampli-
tude mentioned in the context of Eq. (2.2) above, and n,(x) is

the electron number density #(x)y(x) with the understanding
that n, contains only wave vectors close to g or —¢. S is
given by

Solth, ] = Sol h, ] + A J dx cos(q - x)n,(x), (3.2b)

and §0 describes free or band electrons plus any interactions
in channels other than the one mediated by I'. y is the den-
sity susceptibility in the relevant wave-vector region, which
is dominated by the phase-phase susceptibility y,,, which in
turn, as far as leading hydrodynamic effects are concerned, is
the same as the smecton susceptibility, Eq. (2.12),
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x(x,y) = A% sin(g - x)sin(g - y)xoelx —y).  (3.2¢)

The physical interpretation of S is that S, contains the
smectic order in a mean-field approximation whereas the sec-
ond term on the right-hand side of Eq. (3.2a) takes into ac-
count fluctuations that can be described as an exchange of
smectons between electrons.

We now define ¢..(p) = ydp = q) and §..(p) = (p £ q). If
we use a nearly-free-electron model for §0,31 this allows us to
write

Sel . ] = Solth, ] + Sin 1. 0], (3.3a)
where
Skl =2 2 G, () (P)a(p) + N2 [ (D)9 (p + @)
p o==* V4
+ 4 (p) i (p - )], (3.3b)

_ N T
Sl ] =~ ;;E XoolK)[On,_(k—q) — Sn_,(k+q)]
k

X[n,_(wk—q)— on_,(-k+q)]. (3.3¢)

Here

G (p)=iw =&y, (3.3d)

with iw a fermionic Matsubara frequency. & =¢€,—u with w
the chemical potential and ¢, the single-fermion energy-
momentum relation. We also have defined

5”0'1 az(p) = n(r1 (rz(p) - <n(r]0'2(p)>a

where n, ., (p)=(T/V)Z, ¢, (p)h,,(p—k). In Eq. (3.3c) we
have dropped contributions where the x,, appears at wave
vectors k = 2q, as x,. is soft only at k=0.

The action S, can now be diagonalized by a canonical
transformation to quasiparticle fields 7 and 7 via

b(p)=[n.p-q) = apygn-(p— @) N1+ ai_q,

(3.3¢e)

—

p)=[n(p) + an.(PINL+ ey (.da)
with
-1
ty= by = b+ Gy =) +4N]. (3.4D)

and the same relation between . and 7%.. The resulting
quasiparticle action is very similar to the one for helimagnets
derived in Ref. 30. The main difference is that here the bare
quasiparticle Green’s function G, Eq. (3.3d), depends on the
Stoner-band index o, where as in the helimagnon case it does
not. The action can be written as

S[n’ 7_7:|=S()[77? 7_7]+Sint[7]’ 7]]’ (353)

where

So=2 [io— 0,(p)17,(p) np). (3.5b)
[),0’
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p;+k,i0,+iQ p,-k,i0,-1Q

FIG. 1. The effective quasiparticle interaction, Eq. (3.5¢), due to

smecton exchange. Note that the vertices y depend on the quasipar-
ticle momenta in addition to the smecton momentum, see Eq. (3.5f).

Su=Viw S Ko WS-F). (350
k

Here Vy=\?¢*/ 8m§ and the resonance frequencies w-(p) are
given by

1 —_—
w.(p)= E[SM +& V(& - &) +HAN]. (3.5d)
8d(k) =d(k)—(d(k)), with

d(k) = 2 Yk.p) 2 75(p) mo(p = k), (3.5¢)
P oa

2m, a, =,

/7.

/ 2 2
4 N1+aNl+a,,

wk.p) = (3.51)

Note that y(k—0,p)—0. This reflects the fact that the ef-
fective interaction described by S;, in Eq. (3.5¢) represents
the coupling of electronic density fluctuations to the phase of
the smecton. The phase had no physical significance by itself
and the coupling must therefore be to the gradient of the
phase. The structure of our effective theory reflects this. The
effective interaction is graphically represented in Fig. 1.

C. Quasiparticle relaxation time

The effective theory defined by Eq. (3.5) can now be used
to calculate the properties of the quasiparticles by standard
means. Electron correlation functions (which ultimately de-
termine observables such as the conductivity) can be recov-
ered from quasiparticle ones by means of the transformation
(3.4a). We will first focus on the quasiparticle relaxation time
and then briefly discuss transport properties.

The elastic quasiparticle relaxation time 7, can be ob-
tained by adding quenched disorder to the action and calcu-
lating the disorder contribution to the quasiparticle self-
energy. It does not qualitatively depend on the
dimensionality and the results given for the 3-d helimagnon
case in Ref. 30 apply here as well. The inelastic quasiparticle
relaxation rate 1/7, which is given by the imaginary part of
the quasiparticle self-energy due to the interaction S;,, see
Fig. 2, in d=2 is more interesting. To linear order in the
effective interaction, and keeping only the leading tempera-
ture dependence, the rate averaged over the Fermi surface
given by w,(k)=0 can be written as
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P’ /i
< p-k,iQ e +k=0,iQ=0
N . :
—e—————— & Dol
p,i0  k,i0-iQ p,i® p,io p,i®
(a) (b)

FIG. 2. (a) The Fock or exchange and (b) Hartree or direct
contributions to the quasiparticle self-energy due to the effective
interaction mediated by smectons. Only diagram (a) contributes to
the relaxation rate, as diagram (b) is purely real.

1 270mel p.|
s 0 Ngk? vV, wo(p)sinh[wy(p)/T]
2 (&“k/ak;) 2l +(k)]5{ "’“’”]. (3.6)
ky

The integrals over p and k decouple and the temperature
dependence of 1/7 comes from the former. Using Eq. (2.9a)
we see that it is linear in 7, with a logarithmically infinite
prefactor. The latter results from the i{2=0 contribution to
the underlying Matsubara frequency sum; the remainder of
the sum leads to a T'In T behavior. This divergence is cut off
by a variety of effects that have been neglected in the above
treatment. For instance, the underlying lattice structure of a
solid (as opposed to a liquid crystal) breaks the rotational
symmetry and produces a term «k> in Eq. (2.9a), which
leads to a T* behavior of 1/ 7 at asymptotically low tempera-
tures. Also, screening of the quasiparticle interaction effec-
tively leads to the same result.?> There thus is a temperature
scale that cuts off the logarithmic infinity, leaving a 7'In 7 in
the temperature regime where the current treatment is valid.
The remaining question is whether the prefactor given by the
k integral in Eq. (3.6) is nonzero. In general it is but this
depends on the detailed structure of the Fermi surface. For
instance, for underlying nematic order in d=2, which is rel-
evant for stripe order, it is easy to see that the k integral is
nonzero if the axes of the elliptical Fermi surface are not
aligned with ¢ but vanishes if they are.’ We thus conclude
that in a 2-d electronic smectic-C system the quasiparticle
relaxation rate displays non-Fermi-liquid behavior and its
temperature dependence is

1/7% T(In T + const) (clean,d =2). (3.7)
The prefactor depends on the value of ¢ and, in particular, is
strongly dependent on whether gkg/m, is small or large com-
pared to \. This will be discussed in a future publication. In
d=3 the corresponding temperature dependence is T2, as it
is for helimagnons.?? For real systems, these results hold in a
preasymptotic temperature regime whose size depends on
detailed parameter values and it will cross over to a different
behavior in the true asymptotic low-temperature regime.
Comparing with Ref. 21, who found a stronger behavior
1/7=In T, we see that the discrepancy stems from the cou-
pling of the smectons to the quasiparticles. In Ref. 21 the
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quasiparticles couple to the smecton phase, rather than to its
gradient as they should on physical grounds.

The presence of quenched disorder modifies the above
considerations. In the weak-disorder regimej’%3* T
> \/(eg7,)?%, the calculation proceeds in analogy to Ref. 30.
The result is

1/7 T2 (weak disorder,d =2)
ind=2 and 1/7%T in d=3.

(3.8)

D. Transport coefficients

The above results pertain to the quasiparticle relaxation
time, which is not easy to observe directly. Various transport
coefficients depend on relaxation times that are generally dif-
ferent from the quasiparticle one and that are much harder to
calculate. For instance, the Boltzmann equation for the elec-
trical conductivity o, with the scattering treated in Born ap-
proximation, leads to a transport relaxation rate that is, for
the current problem, weaker by one power of temperature
than the quasiparticle rate.?? Technically, the electrical trans-
port relaxation rate is given by Eq. (3.6) with an additional
factor proportional to pi in the integrand of the p integral.
This leads to o 1/T? in d=2 and o= 1/T%? in d=3.

The situation is different, however, for the thermal con-
ductivity k. The temperature dependence of «/T is given by
the quasiparticle relaxation rate.3>3® The physical reason is
that an electric current can relax only by the electrons chang-
ing direction since the electron’s electric charge is conserved.
In the calculation of the relaxation time, this leads to a geo-
metric factor that weighs backscattering more strongly than
forward scattering and this is manifested in the additional
factor of pi in the integrand. An electron’s energy is not
conserved, however, in an inelastic-scattering process, and
hence this geometric factor is absent in the calculation of the
leading temperature dependence of the thermal transport
coefficient.>>37 In the current problem, this leads to

k/T<1/TInT (clean,d=2) (3.9)

for clean systems in d=2. In d=3, the corresponding tem-
perature dependence is 7-*2. The Wiedemann-Franz law is
thus violated, as it is in the case of electron-phonon scatter-
ing, and the Lorenz ratio, defined by L=«/Ta, is propor-
tional to 7 In 7. In weakly disordered systems, the tempera-
ture dependence of /T is governed by Eq. (3.8) but one
needs to take into account the residual value k, of the ther-
mal conductivity. Since the residual values of the transport
coefficients are determined by elastic-scattering processes,
the latter is related to the residual electrical conductivity o,
by the Wiedemann-Franz law «./To,=L, with the Lorenz
ratio L,= 7k} /3e? as a constant.

IV. SUMMARY AND CONCLUSION

In summary, we have determined the Goldstone modes
and their properties in electronic smectics or stripe phases. In
an isotropic model system the soft modes (smectons) are
precisely analogous to those in both smectic and cholesteric
classical liquid crystals. Their wave-vector dependence dif-
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fers (albeit not in a scaling sense) from that of the helimag-
nons in helical magnets, which are analogous to classical
cholesteric liquid crystals. This difference is due to the fact
that spin dynamics are different from density dynamics.

In d=2, the smectons contribute a term proportional to
T%? to the specific heat and the quasiparticle relaxation rate
1/7as well as T/ k, with « the heat conductivity, are propor-
tional to T'In T in clean systems. In weakly disordered sys-
tems, the corresponding leading temperature dependence is
given by T'2. In d=3, the corresponding temperature depen-
dencies are T? (for the specific heat), 73'% (for the relaxation
rate and 7/ k in clean systems), and T (for the relaxation rate
and T/« in the weak-disorder regime), respectively. In the
weak-disorder regime, the leading temperature dependencies
of 1/7, 1/0, and T/ k. The leading temperature dependence
of the electrical resistivity 1/o is weaker than that of 1/7 by
one power of T in clean systems, and the same as that of 1/7
in weakly disordered ones, respectively. Qualititively, all of
these results also hold for the exchange of helimagnons be-
tween electrons in helical magnet,?> and they are summa-
rized in Table 1.

We conclude with some speculations pertaining to the
electrical conductivity. While the standard weak-coupling
treatment of the Boltzmann equation yields a resistivity p
T2 in 2-d clean systems as mentioned above, it is conceiv-
able that in a strongly correlated electron system mode-mode
coupling effects mix the various time scales and lead to a
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TABLE I. Leading smecton contributions to the temperature de-
pendencies of the specific heat (C), the quasiparticle relaxation rate
(1/7), the heat conductivity (), and the electrical conductivity (o).
The same results hold for the helimagnon contributions in helical
magnets. See the text for additional information.

Clean Weak disorder
d=2 d=3 d=2 d=3
C T3/2 T2 T3/2 T2
1/7 TInT 732 T2 T
T/ k TInT 732 T2 T
/o T2 752 T2 T

single relaxation time. It is currently not known whether this
hypothesis is correct, or what it takes at a technical level to
demonstrate it, but it provides a possible mechanism for pro-
ducing an electrical resistivity that is linear in 7 in 2-d or
quasi-2-d systems.
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